```
Beitr. Ent. - Bd. 19 P 1969 * H. 3/6 - S. 595-605 . Berlin
```

Belorusskij Naučno Issledovatel'skij Institut
Lesnogo Chozjaistva
Gomel (UdSSR)

Boris V. Ryvkin

Die Diprionidae und die Komplexe ihrer natürlichen Feinde

In den letzten Jahren war in vielen Gebieten Nord- und Mitteleuropas, teilweise auch in einigen nördlichen Gebieten Asiens, eine Massenvermehrung von Blattwespen der Familie Diprionidae festzustellen. Wie bekannt ist, sind diese phytophagen Insekten, ,eng in ihrer Entwicklung mit den nördlichen Nadelwäldern verbunden" (Benson 1950); sie sind charakterisiert durch eine breite ökologische Plastizität, durch ihre Fähigkeit, sich unter bestimmten Bedingungen schnell zu vermehren, zeitweise in der Vermehrungsgeschwindigkeit ihre Parasiten und andere natürliche Feinde zu überholen und dem Wald große Schäden zuzufügen. Das Verhüten von Waldschäden, die durch die Larven der genannten Blattwespen hervorgerufen werden, ist eine der wichtigsten Aufgaben der Forstwirtschaft. Diese Aufgabe wird um so erfolgreicher gelöst werden, je größer unsere Kenntnisse über die Biologie dieser Schädlinge sind. Durch Untersuchungen und Beobachtungen, die während der letzten Gradation der Diprionidae durchgeführt wurden, konnten folgende Besonderheiten der Biologie der einzelnen Arten festgestellt werden.

Neodiprion sertifer (Geoffroy)

Wie von uns schon früher festgestellt (1957, 1963), unterscheidet sich die rotbraune Kiefernblattwespe Neodiprion sertifer (Geoffrox) in ihrer Biologie deutlich von den Diprionidae, die in der Paläarktis verbreitet sind. Sie entwickelt sich im Verlauf eines Jahres in nicht mehr als einer Generation, sie überwintert als Ei, das Schlüpfen erfolgt am Sommerende; einige ihrer Populationen überwintern als Eonymphen in den Kokons in der Waldstreu. Überall wird eine Bindung des genannten Schädlings an die nördlicheren Gebiete im Vergleich zu den anderen paläarktischen Diprionidae beobachtet. All das erklärt sich aus der anderen Herkunft von Neodiprion sertifer (Gtoffroy). Es ist die einzige eurasische Art der Gattung Neodiprion, deren Evolutionszentrum der Westen Nordamerikas ist, wo die genannte Gattung eine große Artenfülle entfaltet (bis zu 30 Arten).

Wie aber gelangte die rotbraune Kiefernblattwespe in die Paläarktis? Nach der Meinung von Ross (1955) wurden die Vorfahren von Neodiprion sertifer (Geoffroy) zufällig aus dem Westen Nordamerikas nach Ostasien und von dort nach Eurasien eingeschleppt. Allerdings ist folgende Annahme wahrscheinlicher. Die Urheimat von Neodiprion sertifer (Geoffroy) waren sowohl die
nördlichen Gebiete des Westens von Nordamerika (Alaska) als auch die nördlichsten Gebiete Ostasiens (Tschukotka) vor ihrer Trennung durch die Beringstraße. Wie bekannt, existierte die Verbindung zwischen dem Festland der eurasischen und amerikanischen Tundra im Gebiet der Beringstraße bis zu einer sehr jungen geologischen Periode. Davon zeugen die starken Ähnlichkeiten, fast Identitäten, der Faunen dieser Tundren. Wenn man in Gedanken den Ozeanspiegel bis auf 200 Meter senkt, so vergrößern sich die Kontinente allmählich und ihnen schließen sich viele Inseln an. Vor allem verschwindet die Beringstraße, und Alaska verbindet sich mit Tschukotka. In der letzten Zeit aber, nach Angaben des Seismologen E. F. Savarenskis, hebt sich die Gebirgskette Alaskas langsam, und die naheliegenden Teile der Erdrinde, die sich unter dem Ozean befinden, senken sich ab.

Nachdem die Beringstraße die eurasische und amerikanische Tundra getrennt hatte, ging Neodiprion sertifer (Geoffroy) auf das auf den Felsen wachsende Knieholz (Pinus pumila Regul) in der etwas niedrigeren Tschukotka über. Das Zirbelnknieholz - die kriechende Form von Pinus sibirica im Norden des Areals (übereinstimmend mit Pinus cembra, die in den Alpen und Karpaten verbreitet ist)-- kommt hoch in den Bergen und auf Torfmooren vor. Alle diese Pinusarten sind gekennzeichnet durch lange Nadeln, die in Bündeln zu fünft an Kurztrieben sitzen, durch geschlossene Zapfen und ungeflügelte große Samen mit harter, holziger Schale. Pinus pumila Regel ist auch heute die bevorzugte Fraßpflanze von Neodiprion sertifer (Geoffroy) (Römbing 1895, Gäbler 1940, Pschorn-Walcher 1965).

Der Ubergang von Neodiprion sertifer vom Knieholz auf andere Kiefern wurde dadurch hervorgerufen, daß die arktischen Insekten, die an Orten mit geringer Wärme im Verlauf des Sommers bei sehr unbeständigem Wetter mit starkem Wind und bei Einförmigkeit der arktischen Tundra sich zu Biotopen mit weniger harten Bedingungen und stabilerem Lebensmilieu hingezogen fühlen, wie das Downes (1964) darstellt. Die rotbraune Kiefernblattwespe begann sich in Gebiete südlich der Tundra auszubreiten. In erster Linie ging sie auf die Zirbelkiefer über, später auch auf die gewöhnliche und andere Kiefernarten.

Die Zirbel (Pinus sibirica, Pinus cembra) ist auch heute noch die bevorzugte Nahrungspflanze dieser Blattwespe. Sie zog deutlich die Zirbel der Kiefer vor, auch in Kiefernpflanzungen mit gut entwickeltem Kiefernunterwuchs während ihrer Massenvermehrung 1955-56 im Nordural „Deneshin Kamen" " in einer Höhe von $250-400 \mathrm{~m}\left(60^{\circ} 23^{\prime}-60^{\circ} 30^{\prime}\right.$ nördlicher Breite und $59^{\circ} 39^{\prime}-59^{\circ} 46^{\prime}$ östlicher Länge (Semečkin \& Semečkina 1963).

In ihrer ursprünglichen Heimat, in der Arktis, war Neodiprion sertifer (GeofrRoy) an verhältnismäßig niedrige Temperaturen und an eine kurze, aber ununterbrochen belichtete Vegetationsperiode gewöhnt, wo die Bedingungen für die Entwicklung der Lebewesen sehr günstig sind: der Uberfluß von UV-Strahlen im Sommer, die sehr geringe Zahl krankheitserregender Mikroben, ein niedrigerer Gehalt an Kohlendioxyd in den Sommermonaten. Bei diesen Bedingungen litt die Blattwespe kaum unter Krankheiten. In der Arktis verbleibt die

Sonne über dem Horizont von Mai bis Ende August; in der Zeit verläuft die Entwicklung der Blattwespe.

Das Schlüpfen der Imagines fiel mit dem Herannahen des Endes des Polartages zusammen. Danach begann die langanhaltende Polarnacht, und die Entwicklung der rotbraunen Kiefernblattwespe wurde unterbrochen; das Knieholz befindet sich unter einer bis zu 3 m hohen Schneedecke.

Das Ausfliegen der rotbraunen Kiefernblattwespe aus den Kokons am Sommerende ist erblich festgelegt, in den neuen Siedlungsgebieten wird es immer zu Ende der Vegetationsperiode beobachtet. Lyons \& Grifeiths (1962) zeigten, daß das Ausfliegen dieser Blattwespe aus den Kokons faktisch gleichzeitig erfolgt, unabhängig vom Zeitpunkt der Kokonbildung, und daß, entgegen den Erwartungen, die Diapauseperiode bei früh eingesponnenen Exemplaren länger ist. Wallace \& Sullivan (1963) stellten fest, daß die Entwicklungsdauer dieser Blattwespe im Stadium der Pronymphe von der Entwicklungsdauer im Eonymphenstadium abhängt. Je länger die Entwicklung dieser Blattwespe im Eonymphenstadium andauert, desto kürzer verläuft ihre Entwicklung im Pronymphenstadium. Das ist eine kompensierende Einwirkung, die auf eine Verringerung des Zeitraums des Ausfliegens der Imagines gerichtet ist.

Nach Angaben von Okutani \& Tto (1957) neigt die japanische alpine Form von Neodiprion sertifer (Georfrov) dazu, den Entwicklungszyklus im Verlauf von zwei Jahren abzuschließen, und in der Mehrzahl der Fälle erfolgt das Ausfliegen der Imagines jedes zweite Jahr. Anscheinend besaß diese Blattwespe in ihrer Urheimat eine zweijährige Generation. Im Verlauf der ersten Sommersaison erfolgte die Embryonalentwicklung und die Phase der Freßlarve, die sich zum Ende der Vegetationsperiode einspann. Während der zweiten Sommersaison verlief die Entwicklung der Eonymphe und der gesamten Phase der Morphogenese (Pronymphe, Puppe, Imagines im Kokon), und am Ende der Vegetationsperiode erfolgte das Ausfliegen der Imagines und die Eiablage. In diesem Fall überwintert die rotbraune Kiefernblattwespe das erste Jahr als Ei in den Nadeln der Kiefer, das zweite Jahr als Eonymphe im Kokon in der Waldstreu. Im Zuge der Ansiedlung von Neodiprion sertifer (Geoffroy) in Gebieten mit wärmerem Klima, aber mit weniger kurzen Lichttagen, erfolgte die Entwicklung dieser Blattwespe im Verlauf eines Jahres; einige Eonymphen aber blieben in den Kokons in der Waldstreu und begannen zu diapausieren. In nördlicheren Gebieten mit anhaltendem Lichttag finden sich weniger diapausierende Eonymphen in den Kokons als in den südlicheren.

Sullivan \& Wallace (1965) zogen diese Blattwespe aus Eiern, die an drei verschiedenen Orten gesammelt wurden: in der Nähe von Blagojevgrad (Bulgarien, $42^{\circ} 01^{\prime}$ nördlicher Breite, $23^{\circ} 06^{\prime}$ östlicher Länge, in einer Höhe von 145 Fuß über dem Meeresspiegel), in der Nähe von Ontario (Kanada, 44 ${ }^{\circ} 31^{\prime}$ nördlicher Breite, 81° westlicher Länge, in einer Höhe von $1000 \mathrm{Fuß}$) und aus Kaukajaki (Finnland, $62^{\circ} 22^{\prime}$ nördlicher Breite, $22^{\circ} 17^{\prime}$ östlicher Länge, in einer Höhe von $525 \mathrm{Fuß}$ über dem Meeresspiegel, bei $20 \pm 1^{\circ} \mathrm{C}$ und 17 stündigem Tag).

Weniger als 30 Tage nach dem Einspinnen schlüpften aus 90% der finnischen Populationen die erwachsenen Blattwespen aus. Aus den Populationen von Blagojevgrad und Ontario schlüpften die Imagines 45 Tage nach dem Einspinnen noch nicht, worauf die Kokons geöffnet wurden; in ihnen befanden sich normal entwickelte Eonymphen. Damit wurde auf dem Versuchswege das Vorhandensein der Diapause unter Individuen, die bei Blagojevgrad und Ontario gesammelt wurden, und das Fehlen bei der überwiegenden Mehrzahl der finnischen Populationen, auf hoher Breite eingetragen, bewiesen.

Damit erklärt es sich auch, daß die Gradationen der rotbraunen Kiefernblattwespe zuerst in nördlicheren Gebieten mit verhältnismäßig langem Tag beobachtet werden. Nach dem sehr trockenen Jahr 1959 wurde in vielen Gebieten Europas eine starke Massenvermehrung der Blattwespen beobachtet. Nur in den gemäßigten Breiten: Deutschland (Schwenke 1964, Thalenhorst 1963, Urban 1965), Polen, Weißrußland, Ukraine, wurden Gradationen von Diprion pini (Linné) und Gilpinia pallida (KLUG) beobachtet. In nördlicheren Gebieten Estlands (Kovpillem, 1963), im Leningrader Gebiet, auf der Karelischen Landenge, in Finnland wurde eine Massenvermehrung der rotbraunen Kiefernblattwespe beobachtet.
Kangas (1963) weist darauf hin, daß in den Wäldern Finnlands ihrer Bedeutung nach unter den Diprionidae die rotbraune Kiefernblattwespe den ersten Platz einnimmt, daß deren Gradationen sehr häufig sind und sich im Mittel alle fünf bis sechs Jahre wiederholen, dabei noch auf sehr großen Flächen; Diprion pini besitzt demgegenüber eine lokale Verbreitung. In der Periode von 1942 bis 1962 wurden Gradationen von Neodiprion sertifer (Geoffroy) in diesem Lande fünfmal festgestellt: 1942, 1947, 1950-51, 1957-58, 1960-62. Das intensivste Aufflammen einer Massenvermehrung der rotbraunen Kiefernblattwespe in den letzten hundert Jahren wurde in Finnland 1960-62 beobachtet.

Andererseits verleiht das Vorhandensein von diapausierenden Individuen in den Vermehrungsherden von Neodiprion sertifer (Geoffroy) in den gemäßigten Breiten dieser Art eine große Lebensfähigkeit; sie erlaubt es ihr, die für die Entwicklung günstigen Bedingungen auszunutzen und bei ungünstigen Bedingungen in den Ruhezustand überzugehen. Das ist einer der Gründe, daß in den gemäßigten Breiten im Mittel die rotbraune Kiefernblattwespe häufigere Gradationen erzeugt im Vergleich zu anderen Blattwespenarten.

Der zweite Grund für die häufigen Gradationen der genannten Blattwespe ist die Diskrepanz ihrer Entwicklung mit den Hauptparasiten der paläarktischen Diprionidae, vor allem der Ei- und der Larvenparasiten, die sich in den Kronen der Kiefern ernähren. Alle diese Parasiten entwickeln sich im Verlauf des Jahres in zwei Generationen, Neodiprion sertifer (Geoffroy) aber besitzt nur eine Jahresgeneration, und in den neuen Siedlungsgebieten, wo die hauptsächlichsten natürlichen Feinde fehlten, befand sich diese Art in für die Entwicklung und Vermehrung außerordentlich günstigen Bedingungen. Es ist außerdem bekannt, daß, nachdem dieser Schädling zufällig 1925 in den Osten Nordamerikas gelangte, wo seine hauptsächlichsten natürlichen Feinde fehlten, er dort eine be-
deutende Gefahr darstellt. In Eurasien allerdings, wo sich die rotbraune Kiefernblattwespe schon einige Jahrtausende vorher ansiedelte, besitzt sie ihre spezifischen Parasiten, die sich völlig an sie angepaßt haben. Die Evolution einiger Insektengattungen, die auf Diprionidae parasitieren, führte zu einer hohen Stufe der Anpassung ihrer einzelnen Arten an bestimmte Blattwespenarten.

Spezifische Parasiten der rotbraunen Kiefernblattwespe, die sich völlig synchron mit ihr, das heißt, die sich im Verlauf eines Jahres in einer Generation entwickeln, sind folgende Arten: Larvenparasiten, die sich in den Baumkronen ernähren: Lophyroplectus luteator (Thunberg), Lamachus eques (Hartig) teilweise auch Zemiphora scutulata (Hartia) ; der Eiparasit Tetracampe diprioni Terr. und der Parasit der erwachsenen Larven unmittelbar vor dem Einspinnen, Exenterus abruptorius (Thunberg). Von diesen ist nur der letzte, als Ektoparasit, hocheffektiv. Die genannten Parasiten, die sich in den Blattwespenlarven ernähren und sich relativ langsam entwickeln, werden gewöhnlich durch die Parasiten der Eonymphen in den Kokons verdrängt, und zwar durch die Ektoparasiten Pleolophus (Microcryptus) basizonius (Gravenhorst), Agrothereutes adustus (Gravenhorst), Dahlbominus fuscipennis (Zetterstedt). Die Kokons der rotbraunen Kiefernblattwespe sind dünnwandig, und sie werden leicht von den Weibchen der genannten Ektoparasiten durchdrungen. Als Außenparasiten mit kurzer Entwicklungsdauer verdrängen sie in der Mehrzahl der Fälle die oben erwähnten Entoparasiten der Blattwespenlarven, die sich im Verlauf des Jahres nur in einer Generation entwickeln.

Die genannten Ektoparasiten der Eonymphen in den Kokons sind einer der wesentlichen Faktoren zur Unterdrückung von Massenvermehrungsherden der rotbraunen Kiefernblattwespe. In Weißrußland zum Beispiel stellen sie ungefähr 80% der Parasiten des Schädlings dar. Dies wird auch durch Arbeiten über das Einführen der Parasiten der Kiefernblattwespe aus Europa in den Süden Ontarios, das seit 1940 durchgeführt wird, bestätigt. Von den elf eingeführten Parasiten bürgerten sich nur die Ektoparasiten Exenterus abruptorius (Thunberg), Exenterus amictorius (Panzer), Pleolophus (Microcryptus) basizonius (Gravenhorst), Dahlbominus fuscipennis (Zetterstedt) ein, nur die beiden letzten besitzen eine wirtschaftliche Bedeutung (McGugan \& Coppel 1962).

Die Tachine Drino inconspicua (Meigen), die ein so hocheffektiver Parasit ist, der sich von Blattwespenlarven ernährt und der eine sehr große Rolle bei der Unterdrückung von Vermehrungsherden der gewöhnlichen Kiefernblattwespe und der ihr ähnlichen Diprionidae-Arten spielt, hat in den Herden der rotbraunen Kiefernblattwespe nur dann eine Bedeutung, wenn auch die Wirte ihrer zweiten Generation vorhanden sind, der Kiefernspinner (Ryvkin 1957). Im gleichen Maße ist auch der Eiparasit Achrysocharella ruforum (Krausse) in Finnland nicht registriert, in Weißrußland parasitiert er die Eier der rotbraunen Kiefernblattwespe in unbedeutendem Maße und führt nicht zu völliger Unterdrückung der Massenvermehrung dieses Schädlings.

Sehr wesentliche Faktoren bei der Unterdrückung von Vermehrungsherden der rotbraunen Kiefernblattwespe in den gemäßigten Breiten sind Viruserkrankungen der ältesten Larvenstadien (gewöhnlich Weibchen) in den Wipfeln der Kiefern. In der Urheimat litten die Larven dieser Blattwespe nicht unter Krankheiten wegen des Überflusses ultravioletter Strahlen; in den neuen Siedlungsgebieten aber sind die Krankheiten der Larven im zweiten Jahr der eruptiven Phase der Massenvermehrung ein entscheidender Faktor bei der Unterdrückung der Herde. Der zweite ernste Faktor zur Senkung der Quantität dieses Schädlings ist das Austrocknen der Eier bei Veränderung der Luftfeuchtigkeit und des Feuchtigkeitsgehalts der Kiefernnadeln.

Die Schädlichkeit der rotbraunen Kiefernblattwespe ist um vieles geringer als die der gewöhnlichen Kiefernblattwespe und der gelblichen Blattwespe Gilpinia pallida (KlUg). Deren Larven ernähren sich von den Nadeln der Vorjahrestriebe und schädigen nicht die der Maitriebe (des laufenden Jahres). In Junganpflanzungen rufen die Larven dieser Blattwespe manchmal ein Verkrümmen der Triebe und ein Zweikronenwachstum hervor, was an die Schäden der Triebwicklerraupen der Gattung Evetria erinnert. Das starke Lichtbedürfnis und der Ernährungsmodus dieser Art sind durch ihre Anpassung an die lichten Bestände des Zirbelkiefernknieholzes ihrer Urheimat und der späten Bildung der Jahrestriebe bei dieser Form der kriechenden Kiefer bedingt.

Unter den Bedingungen Weißrußlands schlüpfen die Larven der rotbraunen Kiefernblattwespe in Jahren mit mittleren metereologischen Bedingungen vom 12.-15. Mai und lassen sich Ende Juni in die Waldstreu hinab. Die nichtdiapausierenden Exemplare liegen im Juli als Eonymphen vor. Die allgemeine Entwicklungsdauer im Stadium der Eonymphe im Kokon beträgt 30-35 Tage; die Morphogenese dauert 30-40 Tage, wovon auf die Pronymphe ca. 20 Tage, auf die Puppe etwa 15 Tage und auf die Imago vor dem Ausschlüpfen 2-3 Tage entfallen. Auf Grund der Zahl der Pronymphen und Puppen dieser Blattwespe im Juli (wobei die Kokons zur Untersuchung unbedingt geöffnet werden müssen) bestimmt sich die Intensität ihres Fluges im August-September des laufenden Jahres und der Grad der Schäden an den Kiefernnadeln durch ihre Larven im Mai-Juni des nächsten Jahres.

Diprion pini (Linnaeds)

In den Wäldern Weißrußlands wurde das Auftreten einer Massenvermehrung dieser Blattwespe im Jahre 1961 und erneut im Jahre 1964 festgestellt. Die erste Gradation war sehr intensiv, man kann sie als die stärkste der letzten hundert Jahre bezeichnen, wie das Kangas (1964) für die Massenvermehrung der Kiefernblattwespen in den Jahren 1960-62 für Finnland ausdrückte. In den nördlicheren Gebieten Weißrußlands überwog 1961 Gilpinia pallida (Kuvg), in den südlicheren Diprion pini (LinNé), in den zentralen Gebieten waren beide Arten im gleichen Verhältnis vorhanden.

Die gleichzeitige Massenvermehrung der Kiefernblattwespen auf einemgroßen Territorium zeugt davon, daß der Hauptfaktor, der zu einer Massenvermehrung
führte, die klimatischen Bedingungen der letzten Jahre waren. 1959 war es sehr trocken, ebenso 1960, 1963 und die erste Hälfte von 1964.

Im Herbst 1964 und im Frühjahr 1965 wurden mehr als 45000 Blattwespenkokons gesammelt, die unter Laboratoriumsbedingungen auf ihren Befall mit Krankheiten und Parasiten durch Züchtung der Blattwespen und ihrer Parasiten und durch Öffnen untersucht wurden. Aus den Kokons wurden vor allem Pleolophus (Microcryptus) basizonius (Gravenhorst) und die Tachine Drino inconspicua (Meigen) gezogen, die anderen parasitierenden Insekten waren nur in wenigen Exemplaren vorhanden.

Es wurde festgestellt, daß das Schlüpfen der Tachine im April-Mai, das der Schlupfwespe auch im April-Mai, zu etwa einem Viertel aber im Juni-Juli beobachtet werden konnte. Das zeigt, daß eine gewisse Anzahl dieser Schlupfwespe in die Diapause geht, wodurch eine Synchronisierung mit der zweiten, weitaus zahlreicheren Generation der gewöhnlichen Kiefernblattwespe erreicht wird.

Von großem Interesse sind auch die Werte zum Schlüpfen der Blattwespe selber. Es erfolgte zu drei Terminen: Ende April-Anfang Mai, in der ersten Junihälfte und Mitte Juli:

Arten	Zahl der geschlüpften Exomplase				
	letzte April- dekade	Mai	Juni	Juli	insgesamt
Diprion pini (LinNaENS)	$\frac{395}{14,9 \%}$	$\frac{255}{9,6 \%}$	142 $5,7 \%$	$\frac{1845}{68,8 \%}$	$\frac{2637}{100 \%}$
Pleolophus basizonius (Gravbinhorst) und einzelne andere Schlupfwespen	$\frac{305}{18,3 \%}$	$\frac{963}{58,0 \%}$	-67	$\frac{325}{19,5 \%}$	$\frac{1660}{100 \%}$
Drino inconspicua (METGEN)	$\frac{1370}{70 \%}$	$\frac{583}{30 \%}$	-	-	$\frac{1953}{100 \%}$

Das Verhältnis der geschlüpften Blattwespen zu den genannten Terminen in den verschiedenen Herden war unterschiedlich, an manchen Orten war es 22,0, 9,8 und $68,2 \%$, an anderen $42,5,4,7,52,8 \%$ sowie $17,7,3,3,79 \%$ und $43,5,6,0$ und $50,5 \%$.

Die erwähnten Zuchten der Blattwespen und ihrer Parasiten aus den Kokons, die im Herbst 1964 gesammelt wurden, zeigen deutlich drei Termine des Schlüpfens von Diprion pini (Linné) aus den Kokons im Januar, März und im Juli 1964, was ihren Schlupfterminen unter Freilandbedingungen entspricht: Mai, Juni und Juli. Das Schlüpfen der Blattwespen begann schon im November, erreichte die erste Spitze ($20,4 \%$) im Januar, die zweite ($20,7 \%$) im März und die dritte ($30,4 \%$) im Juli.

Somit schlüpfen die Imagines der gewöhnlichen Kiefernblattwespe nicht nur im Mai, im Juni, sondern auch im Juli aus den Kokons in der Waldstreu, wie das auch Schwenke (1964) für die DBR feststellt. Dasselbe wurde 1962 festgestellt. In diesem Jahr wurde das Schlüpfen dieser Blattwespe vom 24. April bis

Ende Juni beobachtet; es waren aber zwei Spitzen vorhanden, vom 19.-27. Mai und vom 12.-17. Juni, danach wurde das Schlüpfen Mitte Juli festgestellt. Dasselbe Bild bot sich 1938 nach Auftreten einer Massenvermehrung von Diprion pini (Linnaeus) im Süden Weißrußlands.

Folglich zeigt in Weißrußland die gewöhnliche Kiefernblattwespe drei Artaufzweigungen, drei Glieder, wobei jedes seine Schlupf- und Eiablagetermine besitzt. Im Jahre des Auftretens der Massenvermehrung der gewöhnlichen Kiefernblattwespe schlüpfen im Juli sowohl Tiere der zweiten Generation des Maigliedes aus den Kokons in der Kiefernkrone (welche gewöhnlich die Eier in die Wipfel großer Bäume ablegt) als auch die Tiere des 3. Gliedes aus den Kokons in der Waldstreu (welche gewöhnlich Kiefern geringer Höhe besiedeln). Am häufigsten ergeben die Individuen des Junigliedes Ende Juli des Jahres der Massenvermehrung auch eine zweite Generation.

Daraus folgt, daß zur Feststellung der Intensität des Fluges der gewöhnlichen Kiefernblattwespe eine dreimalige Zählung der Kokons in der Waldstreu notwendig ist, im Herbst, wenn anhand der Zahl der Pronymphen (welche sich schon im Oktober bilden) die Intensität des Fluges des ersten Gliedes bestimmt wird, im Mai zur Bestimmung des Flugumfanges des Junigliedes und im Juli zur Klärung der Flugintensität des Juligliedes.

Das Hauptglied der Blattwespe, das das Aufflammen der Massenvermehrung vorherbestimmt, stellen die Individuen dar, die im Mai, teilweise auch im Juni schlüpfen. Vor allem gegen diese müssen alle Bekämpfungsmittel angewandt werden. Die Vernichtung der Blattwespe in der ersten Sommerhälfte, wenn ihre Anzahl noch klein ist, wendet das Auftreten der viel schädlicheren zweiten Generation in der zweiten Sommerhälfte ab. Der Kampf gegen die Blattwespen, die im Mai und im Juni schlüpfen, wird dadurch erleichtert, daß sie hauptsächlich niedrige Kiefern besiedeln, wo nicht nur chemische, sondern auch einfachste Vernichtungs- und biologische Bekämpfungsmethoden anwendbar sind.

Im Gegensatz zur rotbraunen Blattwespe ist der Parasitenkomplex der gegewöhnlichen Kiefernblattwespe hocheffektiv und schnell wirksam. Als Hauptparasit ihrer Eier sind Achrysocharella ruforum (Kradsse) und als Larvenparasit die Tachine Drino inconspicua (Meigen) die entscheidenden Faktoren zur Unterdrückung der Massenvermehrung dieses Schädlings. Sie sind völlig mit ihrer Entwicklung koordiniert und entwickeln sich im Verlauf eines Jahres in zwei Generationen. Die obengenannte Tachine ist eine der am besten gedeihenden Entomophagen. Sie besitzt ein riesiges Verbreitungsareal und ist, obwohl sie zu den polyphagen Formen gehört, unzweifelhaft mit den Diprionidae und anderen kiefernbewohnenden Arten (Kiefernspinner) verbunden. Als sie 1906 nach Nordamerika gegen den dort eingeschleppten Schwammspinner eingeführt wurde, ging sie zuerst auf die nearktischen Diprionidaearten über. Die Tachine Drino inconspicua (Meigen) ist ein Entoparasit, aber er wird durch seine sehr schnelle Entwicklung nicht von Ektoparasiten verdrängt, die in den Herden von Diprion pini (Linnaeus) so weit verbreitet sind.

Häufige Larvenparasiten der gewöhnlichen Kiefernblattwespe sind Lamachus frutetorum (Hartig), Hypsantyx lituratorius (Linnaeus), Olesicampe (Holocremnus) macellator (Thunberg), Zemiophora scutulata (Hartic). Allerdings werden sie in der Mehrzahl der Fälle durch Außenparasiten verdrängt, die die Eonymphen in den Kokons belegen.

Auch unter den Exenterus-Arten, die die reifen Blattwespenlarven von Diprion pini (Linnafus) vor dem Einspinnen befallen, gibt es spezifische Parasiten, die sich im Laufe des Jahres in zwei Generationen entwickeln, das heißt, die voll synchron mit deren Entwicklung sind. Es sind Ex. amictorius Panzer, Ex. oriolus (Hartig) und einige andere Arten dieser Gattung.

Die gewöhnliche Kiefernblattwespe leidet in weit größerem Maße als die rotbraune Kiefernblattwespe unter Nagetieren in der Herbst- und Winterperiode, die eine große Zahl ihrer überwinternden Kokons vernichten. Trotzdem ist Diprion pini (Linnaeus) lebensfähiger und widerstandsfähiger als die anderen paläarktischen Arten der Kiefernblattwespen. Thr Kokon ist sehr stabil, die Eigelege sind mit einer Schutzdecke versehen, die die Eier sowohl vor Austrocknung als auch vor Infektionen schützt. Das Austrocknen der Eier dieser Art wird seltener festgestellt und ist mit stark veränderten Bedingungen des Wassergehalts in den Kiefernnadeln verbunden.

Gilpinia pallida (KLUG)

Die gelbliche Kiefernblattwespe rief in den letzten Jahren ein Aufflammen von Massenvermehrungen in den nördlichen Gebieten Weißrußlands und in einigen Gebieten der Waldukraine hervor. Sie ist wesentlich weniger widerstandsfähig und lebensfähig im Verhältnis zur gewöhnlichen Kiefernblattwespe; ihre Eigelege sind nicht mit einer Schutzschicht bedeckt und trocknen häufiger aus, ihre Kokons sind sehr dünnwandig und leichter für Feinde anfällig. Ihre Gradationen werden früher unterdrückt als die der gewöhnlichen Kiefernblattwespe. Die Vermehrung dieser Blattwespe wird von allen gewöhnlichen Blattwespenparasiten begrenzt, die sich im Verlauf eines Jahres in zwei Generationen entwickeln, vor allem durch die Tachine Drino inconspicua (Meigen). Telenga (Djadečko, Ermolenko, Telenga 1963) beschrieb eine neue Schlupfwespenart, Polyblastus gilpini Telenga, die sich von der naheverwandten Art Lamachus lophyrorum (Hartig) durch ein glänzendes Feld an den Seiten der Mittelbrust unter dem Flügelansatz und durch Quereindrücke auf dem ersten und zweiten Tergit unterscheidet. Aus 5000 Larven dieser Blattwespe, die von Telenga und seinen Mitarbeitern vom 1. Juni bis zum 20. Juli 1953 gesammelt wurden, und die sich unter Laboratoriumsbedingungen einspannen, sind 1069 Exemplare von Drino inconspicua (Meigen), 805 Exemplare von Polyblastus gilpini Telenga und 206 Exemplare von Holocryptus fuscicornis Tschek. gezogen worden. Einige Bedeutung bei der Vernichtung der Larven der ältesten Stadien der gelblichen Kiefernblattwespe besitzt der polyphage Parasit Apanteles spurius Wesmael.

Die Kiefernblattwespen rufen ein Aufflammen der Massenvermehrung bei Verschlechterung des physiologischen Zustandes ihrer Nahrungsbäume hervor, wenn deren Abwehreigenschaften geschwächt sind, vor allem nach trockenen Jahren. Bei Eintreten solcher Bedingungen muß die Kontrolle der Entwicklung dieser Waldinsekten besonders verstärkt werden.

Zusammenfassung

Es werden Besonderheiten der Biologie verschiedener Diprionidae-Arten mitgeteilt, die aus Untersuchungen und Beobachtungen während ihrer letzten Gradation festgestellt wurden.

Summary

The peculiarities of the biology of different species of Diprionidae are reported which were established by studies and observations during their last mass increase.

Резюме

Докладываются особенности биологии у разнвгх Diprionidae, которых получали из исследований и наблюдений во время их последнего массового размножения.

Literatur

Benson, R. B. An introduction to the natural history of British (Hymenoptera Symphyta). Trans. Soc. Brit. Ent., 10, 46-142; 1950.
Djadečko, N. P.; Ermolenko, V. M. \& Telenga, N. A. K isučeniju parazitovi chičšnikov Chvoinych pili'c'šikov (Hymenoptera Diprionidae) v uslovijach Kijevskogo Poles'ja. Materialy po entomologii Ukrainy. Trudy instituta Zoologii, 19, 3-10; 1963.
Downes, J. A. Arctic insects and their enviroment. Canad. Entom., 96, 279-307; 1964.
Gäbler, H. Lophyrus rufus $=$ sertifer Geoffr. an Bergkiefer und Fichte. Anzeiger Schädlkde., 16, 22--23; 1940.
Kangas, E. Über das schädliche Auftreten der Diprion-Arten (Hym., Diprionidae) in finnischen Kiefernbeständen in diesem Jahrhundert. Zeitschrift f. angew. Entomol., 51, 188-194; 1963.
Kopvillem, Ch. Neochrysocharis (Achrysocharella) ruforum (Krausse) kak parazit jaic ryšego sosnovogo pilil'ššika Neodiprion sertifer (Geoffr.) v Estonskoij SSR. Izv. AN Est. SSR, 12, 73-80; 1963.
Lyons, L. A. \& Griffiths, K. J. Observations on the development of Neodiprion sertifer (Groffr.) within the cocoon (Hymenoptera: Diprionodae). Canad. Entom., 94, 994 bis 1000; 1962.
MoGugan, B. M. \& Coprel, H. C. Biological control of forest insects, 1940-1958. Techn, Communic., 2, C.I.B.C., $35-216$; 1962.
Okotani, T. \& Ito On a pine sawfly in high mountains of Japan. The New Entomologist, 6, 1-3; 1957.
Pschorn-Walcher, H. The ecology of Neodiprion sertifer (Groffr.) (Hym.: Diprionidae) and a review of its Parasite complex in Europe. Techn. Bulletin 5, C.I.B.C., 33-97; 1965.

Röhring, G. Lophyrusfraß am Knieholz im Jahre 1893. Eorstw. ZentralbI. 1895.
Ryvkin, B. V. Die Kiefernblattwespen Weißrußlands und ihre Parasiten (Hymenoptera: Diprionidae). Beitr. Ent., 7, 457-482; 1957.
Ryvkrn, B. V. Zur Kenntnis der Biologie von Kiefernblattwespen in Weißrußland. Beitr. Ent., 13, 455-464; 1963.

Semečkina, M. G. \& Semečkin, I. V. Ryšij sosnovyij pilil'čšik (Neodiprion sertifer Geoffr. opasnyij breditel' kedrovnikov severnogo Urala. Začšita lesov Sibiri ot nasekomych vrediteleij. Izd. AN SSSR Sib. otd. instituta lesa i drevesiny, $90-95 ; 1963$.
Schwenke, W. Grundzüge der Populationsdynamik und Bekämpfung der gemeinen Kie-fernbuschhorn-Blattwespe, Diprion pini L. Zeitschrift f. angew. Entom., 54, 101-107; 1964.

Talenhorst, W. Das Massenauftreten der Kiefernbuschhornblattwespe Diprion pini (L.) in Niedersachsen 1959 bis 1961. Allgem. Forst- und Jagdzeitung, 184, 76-82; 1963.
Urban, S. Die Begrenzungsfaktoren der Kiefernbuschhornblattwespe (Diprion pini L.) in den Jahren 1960 und 1961. Archiv für Forstwesen, 14, 1223-1234; 1965.
Wallace, D. R. \& Sullivan, C. R. Laboratory and Field Investigation of the Effect of Temperature on the Development of Neodiprion sertifer (Geoffr.) in the Cocoon. The Canadian Entomologist, 95, 1051-1066; 1963.

- Geographic variation in the Photoperiodic reaction of Neodiprion sertifer (Geoffr.). Canad. Journal of Zoology, 44, 147; 1965.

